# **Optical design of observation system for charge stripping foil**

Yasuhiro Takeda<sup>1,A)</sup>, Jyunichiro Kamiya<sup>B)</sup>

A) High Energy Accelerator Research Organization
1-1 Oho, Tsukuba, Ibaraki 305-0801

<sup>B)</sup> Japan Atomic Energy Agency

2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195

# Abstract

We have investigated the observation method that can be used under the high radiation environment. However, there is no specific technology to satisfy characteristics of optics due to radiation degradation occurred in a short time. Therefore we started to develop a new observation system that has durability more than 1-MGy of radiation dose and 200 m resolution at the place 10m away from an object. This system is an application of the principle of the telescope. Focusing under the no radiation. (The lens is not used)

We have designed optics to obtain the  $\lambda/16$  resolution.( $\lambda$ = wave length 633nm) Moreover, We have examined the durability of optical parts using gamma-ray emitted from <sup>60</sup>Co, and adopted to use it(Lens: Sapphire or Quartz, Mirror: Rh or TiO<sub>3</sub> multiple coating). We designed the optical system to obtain high resolution.

# 荷電変換膜観察のための光学設計

# 1.はじめに

近年、加速器、イオン源及びその周辺機器等の 格段の進歩により大電流化が進み、機器周辺の放射 線環境が一段と過酷な状況になってきた。この環境 下での機器の状態の常時観察は安全運用や運転効率 の面で非常に重要となってきた。特に長時間ビーム を照射し、変形を起こす荷電変換膜の観察はビーム の安定供給のためにも必要不可欠である。

そこで、我々は高放射線環境下でも使用できる 観察方法の調査を行ってきた。しかし、いずれも短 時間に放射線劣化が起こり、頻繁に部品を交換する 必要が生じるため、現状では満足できる確立した技 術はない。このため、放射線劣化の少ない観察方式 の新しい手法が要求される。我々は1)集積線量1 MGy以上の耐久性を持ち、2)被写体から10m離れ た場所で200μmの分解能を持つ新しい観察系の製作 と実現を図ることを目標に調査開発を始めた。

# 2. 高放射線環境下での観察方式の比較

現在、諸方面で開発中の高放射線環境下で使用する 観察方式の代表例と現状における問題点を示すと: 耐放射線CCDカメラによる直視 問題点:白黒画像。累積線量が約1x10<sup>6</sup>Gyで約CC D素子に放射線劣化が起き、画像が乱れる。 耐放射線石英ファイバースコープ観察

問題点:最小画素径が限られており、画質が悪い。 線量率8.7x10<sup>2</sup>Gy/hで照射した場合、22時間後に は増加損失が300dB/kmになる。

ペリスコープ観察

問題点:リレーレンズで画像を結像しながら伝送し ていくため、詳細な光学設計が必要。

放射線環境下にレンズを置く構成の場合、放射線に よる着色(ブラウニング)が起き、透過効率が著し く悪くなる。

この3方式では、いずれも短時間に放射線劣化が起 こり、部品を頻繁に交換する必要が生じる。結果と して、機器の運転効率の著しい低下とその部品交換 時における放射線被曝が避けられない。

# 3.新しい観察方式の開発

## 3.1 設計概念

放射線環境下において長時間観察の実現のために問 題点を見直した結果、1)放射線損傷が大きく、着 色を起こすレンズ等のガラス材と2)pn反転を起 こすCCD素子などの半導体類を放射線環境下の光 路上に置くべきでないという結論に達した。そこで、 放射線損傷の起こしやすい材質を放射線環境下に全 く入れないやり方で設計を行うこととした。光路に は放射線に強い金属などのミラーのみを配置し(真

<sup>&</sup>lt;sup>1</sup> E-mail: yasuhiro.takeda@kek.jp

TP51

空仕切り窓はのぞく)、放射線防護壁の外に放射線 の影響を受けやすいレンズやCCDカメラなど配置 したシステムを考案した。これは、放射線環境下外 でのみ画像を結像させる望遠鏡の原理を応用したシ ステムである。(図1)

しかし、この実現のためには1)ミラーの放射線劣 化、2)ミラーの面精度、3)観察部レンズの面精 度を検討する必要がある。



叉 1 高鮮明度観察システムの光路概略

# 3.2 光学設計

この光学システムで分解能や鮮明度を高めるために はレンズやミラーの面精度を高精度に仕上げること が重要である。したがって、現状の"職人"と言わ れる技術である /16の面精度を目標とした。 ( :光の波長 一般的に633nm)また、色収差の 補正は、観察部付近でAPOレンズによる補正を行 うことにした。この構造を取り入れたことで収差の 全くないシステムの設計ができた。これらの条件を もとに光路計算を行ったところ、10m先で200・mの 十分な分解能が得られることを確認した。また、こ のシステムでは、望遠鏡の原理を応用しているため、 1) ミラーの切り替えとピント調整のみで1つの観 察部から多数の違った被写体(5被写体)を見るこ とが出来る、2)観察部を駆動させることでズーミ ングの機能を加えることに成功した。

### 光学部品の面精度 4

面精度は、解像度に顕著に影響するため、非常に重 要である。通常の光学部品の面制度は悪く、我々の 望む分解能を得ることは出来ない。そこで、 /16 の精度まで上げる研磨技術の確立を行った。我々は 研磨技術の最適化を図ることでその実現を目指し、 現在、目標の /16の面精度を達成した。(図2)

# 5 構成部品の耐放射線性

この光学系には放射線環境下の光路に1)ミラーを



/16の面精度に仕上がったガラス

配置し、真空と大気の仕切り窓に2)ガラス窓を使用 する。この為、放射線劣化の少ない材質を使用す ることを基本として製作しなければならない。

#### 5.1 線照射試験

放射線による材質の劣化、反射率の低下やコーティ ング材の劣化を日本原子力研究開発研究機構・高崎 研で 線照射試験を行った。1)ミラーはSiCやSiな どのバルク材料でミラーを製作した場合とZerodur 等の基板に金属 ( AI、Ag等 ) コーティングをした場 合、さらにその上に酸化防止膜Si0やMgF2などを コーティングした場合の26サンプル(表1-1)、 2) ガラス窓ではサファイアや合成・溶融石英、BK 7などの6サンプル(表2-1)の放射線劣化度を 系統的に測定して、反射率や透過率の変化や材質な どの影響を比較評価しがら放射線環境下での最適材 料を選択する。目標は集積線量1MGyである。

## 5.2 照射試験結果

今回、約600kGyまで照射試験を行った。 ミラーの照射結果を表1にガラス窓の照射結果を表 2 に示す。

1) ミラーでは、全ての材質で反射率に大きな変化 は見られなかった。しかし、A1とAgをコーティ ングしたものは、表面に茶色い反転や一部に白い曇 リが見られた。RhやTiO+SiO2多層膜は表 面が安定しており、反射率にも変化が見られなかっ た。

2)ガラス窓では、明らかに素材の差が見られた。 特に通常レンズ素材としているBK7は透過率が 5%以下までに落ち込んだ。しかし、サファイアや 石英には透過率の変化は見られなかった。

### まとめ 6

放射線照射試験の結果より、光学部品のある程度 の選択目処が付いた。今後は、さらに累積線量1M

# Gyまでの照射試験を行う。その後、メンテナンスのしやすさや、コーティング材が剥離した場合の処

# 理等を総合的に考え最終的な材料選択を行ってい く予定である。

## 表1-1 ミラー材サンプル

| A l+S i O | A 1+MgF 2 | Ni                        | Ag     | Ag+SiO |
|-----------|-----------|---------------------------|--------|--------|
| コーティング    | コーティング    | コーティング                    | コーティング | コーティング |
| Ag+MgF₂   | Cr+Au     | Au                        | Cr+SiO | Cr     |
| コーティング    | コーティング    | コーティング                    | コーティング | コーティング |
| Rh        | Mo        | (TiO₂+SiO₂) <sup>15</sup> | S i    | S i C  |
| コーティング    | コーティング    | コーティング                    | 基板研磨   | 基板研磨   |

# 表1-2 ミラー材の反射率の変化(代表的なもののみ記す)

| サンブル |               |         | 照射  | 照射量  | ł   | 透過率(%    | b)       |          |          |          |          |          |          |          |          |          |          |          |          | 波長       | (nm)     |
|------|---------------|---------|-----|------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| ナンバー | サンブル名         | 大きさ     | 回数  | (Gy) |     | 400      | 420      | 440      | 460      | 480      | 500      | 520      | 540      | 560      | 580      | 600      | 620      | 640      | 660      | 680      | 700      |
| M-1  | Al+SiOコーティング  | 30x30x5 | 0   |      | 0   | 32.5     | 37       | 41       | 45       | 49       | 53       | 56       | 59       | 62       | 64       | 66.5     | 68       | 70       | 71       | 72       | 73       |
|      |               |         | 1   |      | 100 | 31.73    | 36.34    | 40.91    | 45.25    | 49.43    | 53.2     | 56.66    | 59.7     | 62.4     | 64.67    | 66.62    | 68.27    | 69.72    | 70.95    | 71.89    | 72.88    |
|      |               |         | 2   |      | 250 | 31.14    | 35.91    | 40.39    | 44.81    | 49.02    | 52.86    | 56.34    | 59.38    | 62.14    | 64.5     | 66.48    | 68.19    | 69.55    | 70.82    | 71.82    | 72.74    |
|      |               |         | 3   |      | 600 | 29.59    | 34.33    | 39.07    | 43.64    | 47.95    | 51.88    | 55.47    | 58.73    | 61.5     | 63.92    | 65.99    | 67.72    | 69.24    | 70.48    | 71.61    | 72.5     |
|      |               |         | 変化量 | (%)  |     | 8.953846 | 7.216216 | 4.707317 | 3.022222 | 2.142857 | 2.113208 | 0.946429 | 0.457627 | 0.806452 | 0.125    | 0.766917 | 0.411765 | 1.085714 | 0.732394 | 0.541667 | 0.684932 |
| M-5  | Ag+MgF2コーティング | 30x30x5 | 0   |      | 0   | 81       | 86       | 89       | 91       | 92       | 93       | 94       | 95       | 95.5     | 95.8     | 96       | 96.2     | 96.8     | 97       | 97.1     | 97.2     |
|      |               |         | 1   |      | 100 | 81.22    | 85.86    | 88.61    | 90.62    | 91.96    | 93.02    | 93.81    | 94.45    | 94.96    | 95.39    | 95.65    | 96       | 96.25    | 96.57    | 96.66    | 96.93    |
|      |               |         | 2   |      | 250 | 70.67    | 77.24    | 81.43    | 84.42    | 86.57    | 88.27    | 89.39    | 90.4     | 91.17    | 91.86    | 92.36    | 92.91    | 93.24    | 93.61    | 94.01    | 94.23    |
|      |               |         | 3   |      | 600 | 65.39    | 71.62    | 75.83    | 78.86    | 81.32    | 83.15    | 84.78    | 86.32    | 87.6     | 88.69    | 89.6     | 90.46    | 91.13    | 91.79    | 92.34    | 92.81    |
|      |               |         | 変化量 | (%)  |     | 19.2716  | 16.72093 | 14.79775 | 13.34066 | 11.6087  | 10.5914  | 9.808511 | 9.136842 | 8.272251 | 7.421712 | 6.666667 | 5.966736 | 5.857438 | 5.371134 | 4.902163 | 4.516461 |
| M-11 | Cr+Auコーティング   | 30x30x5 | 0   |      | 0   | 40.5     | 42       | 43       | 43       | 44.5     | 54       | 67       | 78       | 85       | 89       | 91       | 93       | 94       | 95       | 95.8     | 96       |
|      |               |         | 1   |      | 100 | 40.61    | 42.53    | 43.4     | 43.64    | 45.28    | 54.85    | 68.83    | 78.78    | 84.81    | 88.28    | 90.55    | 92.08    | 93.16    | 94.09    | 94.6     | 95.02    |
|      |               |         | 2   |      | 250 | 40.57    | 42.31    | 43.08    | 43.23    | 44.83    | 54.45    | 68.43    | 78.34    | 84.35    | 87.86    | 90.21    | 91.81    | 92.95    | 93.81    | 94.28    | 94.68    |
|      |               |         | 3   |      | 600 | 40.96    | 42.67    | 43.47    | 43.6     | 453      | 54.98    | 69.28    | 79.06    | 84.77    | 88.18    | 90.28    | 91.77    | 92.89    | 93.7     | 94.32    | 94.56    |
|      |               |         | 変化量 | (%)  |     | -1.1358  | -1.59524 | -1.09302 | -1.39535 | -917.978 | -1.81481 | -3.40299 | -1.35897 | 0.270588 | 0.921348 | 0.791209 | 1.322581 | 1.180851 | 1.368421 | 1.544885 | 1.5      |
| M-17 | Rhコーティング      | 45x45x5 | 0   |      | 0   | 64       | 64       | 64       | 64.5     | 65       | 66       | 67       | 67.8     | 68.5     | 69       | 70       | 70.8     | 71.3     | 72       | 73       | 73.8     |
|      |               |         | 1   |      | 100 | 63.23    | 63.39    | 63.63    | 64.07    | 64.78    | 65.6     | 66.39    | 67.25    | 68.07    | 68.88    | 69.71    | 70.46    | 71.23    | 72.02    | 72.73    | 73.37    |
|      |               |         | 2   |      | 250 | 63.1     | 63.24    | 63.32    | 63.71    | 64.29    | 65.08    | 65.83    | 66.59    | 67.36    | 68.05    | 68.77    | 69.51    | 70.25    | 70.92    | 71.6     | 72.25    |
|      |               |         | 3   |      | 600 | 63.19    | 63.45    | 63.71    | 64.12    | 64.87    | 65.59    | 66.41    | 67.27    | 68.05    | 68.91    | 69.63    | 70.38    | 71.19    | 71.9     | 72.66    | 73.32    |
|      |               |         | 変化量 | (%)  |     | 1.265625 | 0.859375 | 0.453125 | 0.589147 | 0.2      | 0.621212 | 0.880597 | 0.781711 | 0.656934 | 0.130435 | 0.528571 | 0.59322  | 0.154278 | 0.138889 | 0.465753 | 0.650407 |
| M-21 | (TiO2+SiO2)15 | 45x45x5 | 0   |      | 0   | 94       | 96.5     | 97       | 97.8     | 98.6     | 98.5     | 98       | 98       | 98.2     | 98.4     | 98.5     | 97.2     | 97       | 96       | 93.5     | 80       |
|      | コーティング        |         | 1   |      | 100 | 94.74    | 97.03    | 97.07    | 98.54    | 99.44    | 99.25    | 98.57    | 98.2     | 98.8     | 99.22    | 98.73    | 97.5     | 96.86    | 95.92    | 94.32    | 82.51    |
|      |               |         | 2   |      | 250 | 94.43    | 96.91    | 96.68    | 98.24    | 99.06    | 98.99    | 98.22    | 97.72    | 98.07    | 98.54    | 97.89    | 96.74    | 95.91    | 94.66    | 93.18    | 81.15    |
|      |               |         | 3   |      | 600 | 95.14    | 97.98    | 98.04    | 99.33    | 100      | 100      | 99.57    | 99.01    | 99.65    | 100      | 99.75    | 98.79    | 98.63    | 97.3     | 95.84    | 85.04    |
|      |               |         | 変化量 | (%)  |     | -1.21277 | -1.53368 | -1.07216 | -1.56442 | -1.41988 | -1.52284 | -1.60204 | -1.03061 | -1.47658 | -1.62602 | -1.26904 | -1.6358  | -1.68041 | -1.35417 | -2.50267 | -6.3     |
| M-23 | Si基板研磨        | 20×5    | 0   |      | 0   | 39       | 36       | 34.5     | 33.5     | 33       | 32       | 31       | 30.5     | 30       | 29.8     | 29.5     | 29       | 29       | 30       | 29.5     | 29.5     |
|      |               |         | 1   |      | 100 | 45.58    | 42.95    | 41       | 39.64    | 38.63    | 37.74    | 36.94    | 36.32    | 35.77    | 35.35    | 35.02    | 34.66    | 34.37    | 34.19    | 34.01    | 33.8     |
|      |               |         | 2   |      | 250 | 49.4     | 46.58    | 44.43    | 42.96    | 41.8     | 40.91    | 40.14    | 39.5     | 39.02    | 38.53    | 38.14    | 37.88    | 37.58    | 37.37    | 37.2     | 37.08    |
|      |               |         | 3   |      | 600 | 50.33    | 47.45    | 45.35    | 43.86    | 42.62    | 41.64    | 40.35    | 40.22    | 39.67    | 39.21    | 38.84    | 38.53    | 38.3     | 38       | 37.87    | 37.72    |
|      |               |         | 変化量 | (%)  |     | -29.0513 | -31.8056 | -31.4493 | -30.9254 | -29.1515 | -30.125  | -30.1613 | -31.8689 | -32.2333 | -31.5772 | -31.661  | -32.8621 | -32.069  | -26.6667 | -28.3729 | -27.8644 |
| M-24 | SiC基板研磨       | 25×5    | 0   |      | 0   | 22.5     | 22.2     | 22       | 21.8     | 21.6     | 21.5     | 21.3     | 21.2     | 21.1     | 21       | 21       | 21       | 21       | 21       | 21       | 21       |
|      |               |         | 1   |      | 100 | 19.12    | 18.91    | 18.77    | 18.58    | 18.41    | 18.31    | 18.24    | 18.2     | 18.11    | 18.07    | 18.08    | 18.04    | 18.04    | 17.91    | 18.14    | 18.18    |
|      |               |         | 2   |      | 250 | 15.61    | 15.37    | 15.3     | 15.19    | 14.93    | 14.89    | 14.87    | 14.8     | 14.78    | 14.76    | 14.76    | 14.76    | 14.8     | 14.55    | 14.77    | 14.85    |
|      |               |         | 3   |      | 600 | 20.86    | 20.59    | 20.36    | 20.17    | 19.9     | 19.82    | 19.73    | 19.67    | 19.64    | 19.59    | 19.53    | 19.56    | 19.58    | 19.38    | 19.55    | 19.62    |
|      |               | 1       | 変化量 | (%)  |     | 7.288889 | 7.252252 | 7.454545 | 7.477064 | 7.87037  | 7.813953 | 7.370892 | 7.216981 | 6.919431 | 6.714286 | 7        | 6.857143 | 6.761905 | 7.714286 | 6.904762 | 6.571429 |

# 表2-1 ガラス窓材サンプル

| サフ                | ァイア   | 溶融     | 招英 CaF <sub>2</sub> |       |             |          |          |          | Bk       | (7       |          |          | ス        | ライド      | ガラフ      | र        | 合成石英     |          |          |          |
|-------------------|-------|--------|---------------------|-------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 表2-2 ガラス窓の透過率の変化( |       |        |                     |       | 代表的なもののみ記す) |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| サンプル              |       | 1.4.4  | 照射                  | 照射量   | 透過率         | ≝(%)     |          |          |          |          |          |          |          |          |          |          |          |          | 波長       | (nm)     |
| ナンハー              | サンフル名 | てきさ    | 回奴                  | (kGy) | 400         | 420      | 440      | 460      | 480      | 500      | 520      | 540      | 560      | 580      | 600      | 620      | 640      | 660      | 680      | 700      |
| W-1               | サファイア | 25×2mm | 0                   | 0     | 85.45       | 85.52    | 85.48    | 85.55    | 85.61    | 85.69    | 85.75    | 85.79    | 85.78    | 85.99    | 85.87    | 86.58    | 86.18    | 86.17    | 86.2     | 86.12    |
|                   |       |        | 1                   | 100   | 84.23       | 84.54    | 84.71    | 84.9     | 84.99    | 85.14    | 85.34    | 85.44    | 85.57    | 85.63    | 85.72    | 85.94    | 85.84    | 86.01    | 86.04    | 85.98    |
|                   |       |        | 2                   | 250   | 84.23       | 84.54    | 84.71    | 84.9     | 84.99    | 85.14    | 85.34    | 85.44    | 85.57    | 85.63    | 85.72    | 85.94    | 85.84    | 86.01    | 86.04    | 85.98    |
|                   |       |        | 3                   | 600   | 84.52       | 85.41    | 85.4     | 85.3     | 85.34    | 85.26    | 85.35    | 85.58    | 85.64    | 85.68    | 85.86    | 85.9     | 86.02    | 85.95    | 85.98    | 86.24    |
|                   |       |        | 変化量                 | (%)   | 1.088356    | 0.128625 | 0.093589 | 0.292227 | 0.315384 | 0.501809 | 0.466472 | 0.244784 | 0.163208 | 0.360507 | 0.011646 | 0.785401 | 0.185658 | 0.255309 | 0.25522  | -0.13934 |
| W-2               | 溶融石英  | 50×2mm | 0                   | 0     | 93.47       | 93.1     | 92.94    | 93.05    | 93.3     | 93.14    | 93.19    | 93.27    | 93.17    | 93.38    | 93.32    | 93.6     | 93.51    | 93.34    | 93.58    | 93.46    |
|                   |       |        | 1                   | 100   | 92.57       | 92.76    | 92.97    | 93.16    | 93.12    | 93.14    | 93.31    | 93.2     | 93.29    | 93.31    | 93.21    | 93.28    | 93.3     | 93.34    | 93.34    | 93.41    |
|                   |       |        | 2                   | 250   | 93.14       | 93.02    | 93.05    | 93.18    | 93.02    | 93.18    | 93.17    | 93.31    | 93.22    | 93.22    | 93.22    | 93.22    | 93.3     | 93.37    | 93.32    | 93.35    |
|                   |       |        | 3                   | 600   | 92.55       | 93.37    | 93.22    | 93.18    | 93.15    | 92.87    | 93       | 93.09    | 93.04    | 93.08    | 93.06    | 93.11    | 93.1     | 93.22    | 93.19    | 93.41    |
|                   |       |        | 変化量                 | (%)   | 0.984273    | -0.29001 | -0.30127 | -0.13971 | 0.160772 | 0.289886 | 0.203885 | 0.192988 | 0.13953  | 0.321268 | 0.278611 | 0.523504 | 0.438456 | 0.128562 | 0.416756 | 0.053499 |
| W-4               | BK7   | 25x3mm | 0                   | 0     | 90.03       | 90.11    | 90.09    | 90.26    | 90.12    | 90.2     | 90.45    | 90.38    | 90.39    | 90.29    | 90.36    | 90.31    | 90.35    | 90.41    | 90.23    | 90.27    |
|                   |       |        | 1                   | 100   | 4.97        | 6.81     | 9.03     | 11.63    | 14.62    | 17.73    | 20.9     | 23.94    | 26.69    | 29.12    | 31.42    | 34.16    | 37.64    | 42.54    | 48.32    | 54.48    |
|                   |       |        | 2                   | 250   | 1.21        | 1.93     | 2.92     | 4.31     | 6.12     | 8.25     | 10.65    | 13.14    | 15.46    | 17.57    | 19.69    | 22.1     | 25.46    | 30.35    | 36.55    | 43.76    |
|                   |       |        | 3                   | 600   | 2.91        | 4.4      | 6.18     | 8.31     | 10.75    | 13.36    | 16.12    | 18.85    | 21.5     | 23.86    | 26.22    | 28.95    | 32.59    | 37.61    | 43.73    | 50.63    |
|                   |       |        | 変化量                 | (%)   | 96.76774    | 95.11708 | 93.14019 | 90.79326 | 88.07146 | 85.18847 | 82.178   | 79.14362 | 76.21418 | 73.57404 | 70.98274 | 67.94375 | 63.92916 | 58.40062 | 51.53497 | 43.91271 |
| W-6               | 合成石英  | 25×2mm | 0                   | 0     | 93.5        | 93.2     | 92.3     | 93       | 93.3     | 93.4     | 93.2     | 93.3     | 93.2     | 93.4     | 93.3     | 93.6     | 93.5     | 93.2     | 93.1     | 93.5     |
|                   |       |        | 1                   | 100   | 92.74       | 92.83    | 93.04    | 93.03    | 93.04    | 93.06    | 93.15    | 93.19    | 93.15    | 93.16    | 93.14    | 93.21    | 93.24    | 93.2     | 93.25    | 93.34    |
|                   |       |        | 2                   | 250   | 93.03       | 92.84    | 92.93    | 93.05    | 93.01    | 93.06    | 93       | 93.2     | 93.1     | 93.11    | 93.21    | 93.17    | 93.2     | 93.3     | 93.21    | 93.28    |
|                   |       |        | 3                   | 600   | 92.24       | 93.38    | 93.18    | 93.08    | 93.1     | 92.88    | 93.05    | 92.98    | 93.06    | 93.08    | 93.12    | 93.08    | 93.15    | 93.22    | 93.18    | 93.47    |
|                   |       |        | 変化量                 | (%)   | 1.347594    | -0.19313 | -0.95341 | -0.08602 | 0.214362 | 0.556745 | 0.160944 | 0.34298  | 0.150215 | 0.342612 | 0.192926 | 0.555556 | 0.374332 | -0.02146 | -0.08593 | 0.032086 |